Pointwise multipliers for Triebel–Lizorkin and Besov spaces on Lie groups
نویسندگان
چکیده
On a general Lie group G endowed with sub-Riemannian structure and of local dimension d, we characterize the pointwise multipliers Triebel–Lizorkin spaces Fαp,q for p,q∈(1,∞) α>d/p, those Besov Bαp,q q∈[1,∞], p>d d/p<α<1. When is stratified, extend latter characterization to all p,q∈[1,∞] α>d/p.
منابع مشابه
Commutators for Fourier multipliers on Besov Spaces
The mapping properties of commutators [T,M ] = TM −MT , for operators between function spaces, and their various generalizations play an important role in harmonic analysis, PDE, interpolation theory and other related areas. A typical situation arises when M = Mb is the pointwise multiplication by a function b and T is a Calderón–Zygmund operator on R. Then well– known results of A.P. Calderón ...
متن کاملPointwise Multipliers of Besov Spaces of Smoothness Zero and Spaces of Continuous Functions
متن کامل
On the pointwise multiplication in Besov and Lizorkin-Triebel spaces
where F and B, with three indices, will denote the Lizorkin-Triebel space Fs p,q and the Besov space Bp,q, respectively. The different embeddings obtained here are under certain restrictions on the parameters. In this introduction, we will recall the definition of some spaces and some necessary tools. In Sections 2 and 3, we give the first contribution of this work. The theorems of Section 2 wi...
متن کاملGeneral Hörmander and Mikhlin Conditions for Multipliers of Besov Spaces
Abstract. Here a new condition for the geometry of Banach spaces is introduced and the operator–valued Fourier multiplier theorems in weighted Besov spaces are obtained. Particularly, connections between the geometry of Banach spaces and Hörmander-Mikhlin conditions are established. As an application of main results the regularity properties of degenerate elliptic differential operator equation...
متن کاملSmooth pointwise multipliers of modulation spaces
Let 1 < p, q < ∞ and s, r ∈ R. It is proved that any function in the amalgam space W (H p′(R ), l∞), where p ′ is the conjugate exponent to p and H p′(R ) is the Bessel potential space, defines a bounded pointwise multiplication operator in the modulation space M p,q(R ), whenever r > |s|+ d.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin Des Sciences Mathematiques
سال: 2023
ISSN: ['0007-4497', '1952-4773']
DOI: https://doi.org/10.1016/j.bulsci.2023.103320